(59) Bollineni, C.; Daraboina, N. Phase equilibria of methane/TBAC mixed hydrates in the presence of produced water. The Canadian Journal of Chemical Engineering 2023, 101 (2), 726-734. DOI: https://doi.org/10.1002/cjce.24579.

(58) Alhejaili, A.; Bell, E.; Daraboina, N. Paraffin Deposition in Production Lines: Effect of Operating Parameters on Deposition Characteristics. Energy & Fuels 2023, 37 (23), 18642-18651. DOI: 10.1021/acs.energyfuels.3c03282.

(57) Alhejaili, A.; Babu, P.; Daraboina, N. Effect of Chloride Salts on TBAC Semiclathrate Hydrates: Application to Produced Water Desalination. Industrial & Engineering Chemistry Research 2023, 62 (47), 20404-20411. DOI: 10.1021/acs.iecr.3c03402.

(56) Santos, G.; Daraboina, N.; Sarica, C. Investigation of influence of wall temperature on particulate deposition using novel dynamic microscopic setup. Fuel 2022, 329, 125326. DOI: https://doi.org/10.1016/j.fuel.2022.125326.

(55) Kumar, A.; Daraboina, N.; Linga, P.; Kumar, R.; Ripmeester, J. A. Experimental Study on Hydrate Structure Transition Using an In Situ High-Pressure Powder X-ray Diffractometer: Application in CO2 Capture. ACS Sustainable Chemistry & Engineering 2022, 10 (35), 11473-11482. DOI: 10.1021/acssuschemeng.2c02581.

(54) Santos, G.; Daraboina, N.; Sarica, C. Dynamic Microscopic Study of Wax Deposition: Particulate Deposition. Energy & Fuels 2021, 35 (15), 12065-12074. DOI: 10.1021/acs.energyfuels.1c01684.

(53) Daraboina, N.; Alhosani, A. Particulate Deposition Modeling for Predicting Paraffin Thickness in Flowlines: Application of Data Analytics for Model Parameters. Industrial & Engineering Chemistry Research 2021, 60 (43), 15793-15804. DOI: 10.1021/acs.iecr.1c02740.

(52) Bell, E.; Lu, Y.; Daraboina, N.; Sarica, C. Experimental Investigation of active heating in removal of wax deposits. Journal of Petroleum Science and Engineering 2021, 200, 108346. DOI: https://doi.org/10.1016/j.petrol.2021.108346.

(51) Bell, E.; Lu, Y.; Daraboina, N.; Sarica, C. Thermal methods in flow assurance: A review. Journal of Natural Gas Science and Engineering 2021, 88, 103798. DOI: https://doi.org/10.1016/j.jngse.2021.103798.

(50) Babu, P.; Bollineni, C.; Daraboina, N. Energy Analysis of Methane-Hydrate-Based Produced Water Desalination. Energy & Fuels 2021, 35 (3), 2514-2519. DOI: 10.1021/acs.energyfuels.0c03550.

(49) Al-Hosani, A.; Ravichandran, S.; Daraboina, N. Review of Asphaltene Deposition Modeling in Oil and Gas Production. Energy & Fuels 2021, 35 (2), 965-986. DOI: 10.1021/acs.energyfuels.0c02981.

(48) Alhosani, A.; Daraboina, N. Effect of multi-phase flow on asphaltene deposition: Field case application of integrated simulator. Journal of Petroleum Science and Engineering 2021, 206, 108972. DOI: https://doi.org/10.1016/j.petrol.2021.108972.

(47) Alhejaili, A.; Daraboina, N. Response to Comments on Effect of Salts on TBAB Semi Clathrate Hydrate Formation: Application to Produced Water Desalination. Energy & Fuels 2021, 35 (7), 6336-6340. DOI: 10.1021/acs.energyfuels.1c00255.

(46) Yang, J.; Lu, Y.; Daraboina, N.; Sarica, C. Wax deposition mechanisms: Is the current description sufficient? Fuel 2020, 275, 117937. DOI: https://doi.org/10.1016/j.fuel.2020.117937.

(45) Babu, P.; Nambiar, A.; Chong, Z. R.; Daraboina, N.; Albeirutty, M.; Bamaga, O. A.; Linga, P. Hydrate-based desalination (HyDesal) process employing a novel prototype design. Chemical Engineering Science 2020, 218, 115563. DOI: https://doi.org/10.1016/j.ces.2020.115563.

(44) Alhosani, A.; Daraboina, N. Modeling of asphaltene deposition during oil/gas flow in wellbore. Fuel 2020, 280, 118617. DOI: https://doi.org/10.1016/j.fuel.2020.118617.

(43) Alhosani, A.; Daraboina, N. Unified Model to Predict Asphaltene Deposition in Production Pipelines. Energy & Fuels 2020, 34 (2), 1720-1727. DOI: 10.1021/acs.energyfuels.9b04287.

(42) Alhejaili, A.; Babu, P.; Daraboina, N. Effect of Salts on TBAB Semi Clathrate Hydrate Formation: Application to Produced Water Desalination. Energy & Fuels 2020, 34 (10), 12810-12821. DOI: 10.1021/acs.energyfuels.0c02091.

(41) Ravichandran, S.; Daraboina, N. Mechanistic Model To Predict Hydrate Deposition under Stratified Flow Conditions. Energy & Fuels 2019, 33 (10), 9510-9519. DOI: 10.1021/acs.energyfuels.9b01624.

(40) Khurana, M.; Veluswamy, H. P.; Daraboina, N.; Linga, P. Thermodynamic and kinetic modelling of mixed CH4-THF hydrate for methane storage application. Chemical Engineering Journal 2019, 370, 760-771. DOI: https://doi.org/10.1016/j.cej.2019.03.172.

(39) Janamatti, A.; Lu, Y.; Ravichandran, S.; Sarica, C.; Daraboina, N. Influence of operating temperatures on long-duration wax deposition in flow lines. Journal of Petroleum Science and Engineering 2019, 183, 106373. DOI: https://doi.org/10.1016/j.petrol.2019.106373.

(38) Chi, Y.; Yang, J.; Sarica, C.; Daraboina, N. A Critical Review of Controlling Paraffin Deposition in Production Lines Using Chemicals. Energy & Fuels 2019, 33 (4), 2797-2809. DOI: 10.1021/acs.energyfuels.9b00316.

(37) Chi, Y.; Sarica, C.; Daraboina, N. Experimental investigation of two-phase gas-oil stratified flow wax deposition in pipeline. Fuel 2019, 247, 113-125. DOI: https://doi.org/10.1016/j.fuel.2019.03.032.

(36) Navaneetha Kannan, S.; Daraboina, N.; Venkatesan, R.; Sarica, C. Settling and re-entrainment of wax particles in near-gelling systems. AIChE Journal 2018, 64 (2), 765-772. DOI: https://doi.org/10.1002/aic.15948.

(35) Daraboina, N.; Chi, Y.; Sarica, C.; Pereyra, E.; Scott, S. L. Effects of High Pressure on the Performance of Existing Two-Phase Flow Models in Wellbores. In SPE Annual Technical Conference and Exhibition, 2018; D021S011R003, Vol. Day 2 Tue, September 25, 2018. DOI: 10.2118/191597-ms.

(34) Chi, Y.; Zhou, S.; Daraboina, N.; Sarica, C. Experimental study of wax deposition under two-phase gas-oil stratified flow. In 11th North American Conference on Multiphase Production Technology, 2018; BHR-2018-153, Vol. All Days.

(33) Soedarmo, A. A.; Daraboina, N.; Sarica, C. Validation of wax deposition models with recent laboratory scale flow loop experimental data. Journal of Petroleum Science and Engineering 2017, 149, 351-366. DOI: https://doi.org/10.1016/j.petrol.2016.10.017.

(32) Dubey, A.; Chi, Y.; Daraboina, N. Investigating the Performance of Paraffin Inhibitors under Different Operating Conditions. In SPE Annual Technical Conference and Exhibition, 2017; D011S010R002, Vol. Day 1 Mon, October 09, 2017. DOI: 10.2118/187252-ms.

(31) Chi, Y.; Daraboina, N.; Sarica, C. Effect of the Flow Field on the Wax Deposition and Performance of Wax Inhibitors: Cold Finger and Flow Loop Testing. Energy & Fuels 2017, 31 (5), 4915-4924. DOI: 10.1021/acs.energyfuels.7b00253.

(30) Agarwal, J.; Ravichandran, S.; Daraboina, N.; Sarica, C. Effect of Hydrodynamic Parameters on the Wax Mass Density: Scale Up From Laboratory Flow Loop to Crude Production Pipelines. In Offshore Technology Conference, 2017; D011S011R003, Vol. Day 1 Mon, May 01, 2017. DOI: 10.4043/27757-ms.

(29) Soedarmo, A. A.; Daraboina, N.; Sarica, C. Microscopic Study of Wax Deposition: Mass Transfer Boundary Layer and Deposit Morphology. Energy & Fuels 2016, 30 (4), 2674-2686. DOI: 10.1021/acs.energyfuels.5b02887.

(28) Soedarmo, A. A.; Daraboina, N.; Lee, H. S.; Sarica, C. Microscopic Study of Wax Precipitation—Static Conditions. Energy & Fuels 2016, 30 (2), 954-961. DOI: 10.1021/acs.energyfuels.5b02653.

(27) Kumar, A.; Daraboina, N.; Kumar, R.; Linga, P. Experimental Investigation To Elucidate Why Tetrahydrofuran Rapidly Promotes Methane Hydrate Formation Kinetics: Applicable to Energy Storage. The Journal of Physical Chemistry C 2016, 120 (51), 29062-29068. DOI: 10.1021/acs.jpcc.6b11995.

(26) Daraboina, N.; Soedarmo, A.; Sarica, C. Microscopic Study of Wax Inhibition Mechanism. In Offshore Technology Conference, 2016; D011S004R003, Vol. Day 1 Mon, May 02, 2016. DOI: 10.4043/26973-ms.

(25) Chi, Y.; Daraboina, N.; Sarica, C. Investigation of inhibitors efficacy in wax deposition mitigation using a laboratory scale flow loop. AIChE Journal 2016, 62 (11), 4131-4139. DOI: https://doi.org/10.1002/aic.15307.

(24) Walker, V. K.; Zeng, H.; Ohno, H.; Daraboina, N.; Sharifi, H.; Bagherzadeh, S. A.; Alavi, S.; Englezos, P. Antifreeze proteins as gas hydrate inhibitors. Canadian Journal of Chemistry 2015, 93 (8), 839-849. DOI: 10.1139/cjc-2014-0538.

(23) Daraboina, N.; von Solms, N. The Combined Effect of Thermodynamic Promoters Tetrahydrofuran and Cyclopentane on the Kinetics of Flue Gas Hydrate Formation. Journal of Chemical & Engineering Data 2015, 60 (2), 247-251. DOI: 10.1021/je500529w.

(22) Daraboina, N.; Perfeldt, C. M.; Solms, N. v. Testing antifreeze protein from the longhorn beetle Rhagium mordax as a kinetic gas hydrate inhibitor using a high-pressure micro differential scanning calorimeter. Canadian Journal of Chemistry 2015, 93 (9), 1025-1030. DOI: 10.1139/cjc-2014-0543.

(21) Daraboina, N.; Perfeldt, C.; von Solms, N. Testing antifreeze protein from the longhorn beetle Rhagium mordax as a kinetic gas hydrate inhibitor using a high-pressure micro differential scanning calorimeter-DTU Orbit (01/04/2019). 2015.

(20) Daraboina, N.; Pachitsas, S.; von Solms, N. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation. Fuel 2015, 139, 554-560. DOI: https://doi.org/10.1016/j.fuel.2014.09.013.

(19) Daraboina, N.; Pachitsas, S.; von Solms, N. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems. Fuel 2015, 148, 186-190. DOI: https://doi.org/10.1016/j.fuel.2015.01.103.

(18) Sun, D.; Daraboina, N.; Ripmeester, J.; Englezos, P. Capture of CO2 and Storage in Depleted Gas Reservoirs in Alberta as Gas Hydrate. In Gas Injection for Disposal and Enhanced Recovery, 2014; pp 305-310.

(17) Perfeldt, C. M.; Chua, P. C.; Daraboina, N.; Friis, D.; Kristiansen, E.; Ramløv, H.; Woodley, J. M.; Kelland, M. A.; von Solms, N. Inhibition of Gas Hydrate Nucleation and Growth: Efficacy of an Antifreeze Protein from the Longhorn Beetle Rhagium mordax. Energy & Fuels 2014, 28 (6), 3666-3672. DOI: 10.1021/ef500349w.

(16) Herslund, P. J.; Daraboina, N.; Thomsen, K.; Abildskov, J.; von Solms, N. Measuring and modelling of the combined thermodynamic promoting effect of tetrahydrofuran and cyclopentane on carbon dioxide hydrates. Fluid Phase Equilibria 2014, 381, 20-27. DOI: https://doi.org/10.1016/j.fluid.2014.08.015.

(15) Zhong, D.-L.; Daraboina, N.; Englezos, P. Coal Mine Methane Gas Recovery by Hydrate Formation in a Fixed Bed of Silica Sand Particles. Energy & Fuels 2013, 27 (8), 4581-4588. DOI: 10.1021/ef400676g.

(14) Zhong, D.-L.; Daraboina, N.; Englezos, P. Recovery of CH4 from coal mine model gas mixture (CH4/N2) by hydrate crystallization in the presence of cyclopentane. Fuel 2013, 106, 425-430. DOI: https://doi.org/10.1016/j.fuel.2013.01.029.

(13) Daraboina, N.; Ripmeester, J.; Englezos, P. The impact of SO2 on post combustion carbon dioxide capture in bed of silica sand through hydrate formation. International Journal of Greenhouse Gas Control 2013, 15, 97-103. DOI: https://doi.org/10.1016/j.ijggc.2013.02.008.

(12) Daraboina, N.; Moudrakovski, I. L.; Ripmeester, J. A.; Walker, V. K.; Englezos, P. Assessing the performance of commercial and biological gas hydrate inhibitors using nuclear magnetic resonance microscopy and a stirred autoclave. Fuel 2013, 105, 630-635. DOI: https://doi.org/10.1016/j.fuel.2012.10.007.

(11) Daraboina, N.; Malmos, C.; von Solms, N. Investigation of Kinetic Hydrate Inhibition Using a High Pressure Micro Differential Scanning Calorimeter. Energy & Fuels 2013, 27 (10), 5779-5786. DOI: 10.1021/ef401042h.

(10) Daraboina, N.; Malmos, C.; von Solms, N. Synergistic kinetic inhibition of natural gas hydrate formation. Fuel 2013, 108, 749-757. DOI: https://doi.org/10.1016/j.fuel.2013.02.018.

(9) Daraboina, N.; Linga, P. Experimental investigation of the effect of poly-N-vinyl pyrrolidone (PVP) on methane/propane clathrates using a new contact mode. Chemical Engineering Science 2013, 93, 387-394. DOI: https://doi.org/10.1016/j.ces.2013.02.011.

(8) Linga, P.; Daraboina, N.; Ripmeester, J. A.; Englezos, P. Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel. Chemical Engineering Science 2012, 68 (1), 617-623. DOI: https://doi.org/10.1016/j.ces.2011.10.030.

(7) Daraboina, N.; Ripmeester, J.; Walker, V. K.; Englezos, P. Natural Gas Hydrate Formation and Decomposition in the Presence of Kinetic Inhibitors. 1. High Pressure Calorimetry. Energy & Fuels 2011, 25 (10), 4392-4397. DOI: 10.1021/ef200812m.

(6) Daraboina, N.; Ripmeester, J.; Walker, V. K.; Englezos, P. Natural Gas Hydrate Formation and Decomposition in the Presence of Kinetic Inhibitors. 3. Structural and Compositional Changes. Energy & Fuels 2011, 25 (10), 4398-4404. DOI: 10.1021/ef200814z.

(5) Daraboina, N.; Linga, P.; Ripmeester, J.; Walker, V. K.; Englezos, P. Natural Gas Hydrate Formation and Decomposition in the Presence of Kinetic Inhibitors. 2. Stirred Reactor Experiments. Energy & Fuels 2011, 25 (10), 4384-4391. DOI: 10.1021/ef200813v.

(4) Shukla, N. B.; Daraboina, N.; Madras, G. Ultrasonic degradation of poly(acrylic acid). Journal of Applied Polymer Science 2009, 112 (2), 991-997. DOI: https://doi.org/10.1002/app.29460.

(3) Shukla, N. B.; Daraboina, N.; Madras, G. Oxidative and photooxidative degradation of poly(acrylic acid). Polymer Degradation and Stability 2009, 94 (8), 1238-1244. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.04.020.

(2) Daraboina, N.; Madras, G. Kinetics of the ultrasonic degradation of poly (alkyl methacrylates). Ultrasonics Sonochemistry 2009, 16 (2), 273-279. DOI: https://doi.org/10.1016/j.ultsonch.2008.08.007.

(1) Daraboina, N.; Madras, G. Thermal and Photocatalytic Degradation of Poly(methyl methacrylate), Poly(butyl methacrylate), and Their Copolymers. Industrial & Engineering Chemistry Research 2008, 47 (18), 6828-6834. DOI: 10.1021/ie800883n.