Problem 3

Ref.: C. C. Tung and A. J. Speziale, J. Org. Chem. 1963, 28, 2009.

1. Draw all bonds near the reactive center in the starting materials
2. Draw all \mathbf{H}-atoms near the reactive sites of starting materials and products
3. Balance the equation
4. Number the non-H atoms
5. Identify bonds made and broken

Bonds made: 1-4, 2-H
Bonds broken: 2-1.

Identify the conditions
Acidic (does not generate strong bases)

Mechanism

Discussion

Although the reaction is under the acidic medium, the $S_{N} 1$ mechanism was not drawn. How did we know that the reaction is $S_{N} 2$ and not $S_{N} 1$? If we draw an $S_{N} 1$ mechanism for the above reaction the stereochemistry at the benzylic position will be scrambled. The $\mathrm{S}_{\mathrm{N}} 2$ reaction requires a backside attack of the nucleophile. As such, it provides the product with the right stereochemistry.

Now try the following mechanism:

V. K. Aggarwal, I. Coldham, S. McIntyre, F. H. Sansbury, M.-J. Villa and S. Warren, Tetrahedron Lett., 1988, 4885-4888.

